8k^2-4=516

Simple and best practice solution for 8k^2-4=516 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8k^2-4=516 equation:



8k^2-4=516
We move all terms to the left:
8k^2-4-(516)=0
We add all the numbers together, and all the variables
8k^2-520=0
a = 8; b = 0; c = -520;
Δ = b2-4ac
Δ = 02-4·8·(-520)
Δ = 16640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16640}=\sqrt{256*65}=\sqrt{256}*\sqrt{65}=16\sqrt{65}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{65}}{2*8}=\frac{0-16\sqrt{65}}{16} =-\frac{16\sqrt{65}}{16} =-\sqrt{65} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{65}}{2*8}=\frac{0+16\sqrt{65}}{16} =\frac{16\sqrt{65}}{16} =\sqrt{65} $

See similar equations:

| 2x+4(x+1)+3(x+2)=64 | | 2^2=(5x-4) | | 12-4h-2(h-1=4(h+4) | | 1.x5=105 | | X-16=162x | | 2z+20=180 | | -47=-3x+7x+1 | | a+14=82 | | r/6=20 | | 2n^2+14=-16n | | 5x+13+2x+2=60 | | 16x=168 | | x-6=41 | | 4.7n-7.9=-7.5 | | k^2+12k=-6 | | .5x+3=1/8x-12 | | 8x=189 | | 14-3x=–10 | | −6k+7.3=8.5 | | 2((12+2x)+(15+2-))=74 | | 2/5h-4.8=-4.5 | | 12x+19x-6+2=-2x+2-6 | | -52=-3u=8 | | 4(w+1)=(-6) | | -18+4a=28-5a | | 36x=270 | | 2-2z=6 | | 2/5(j+40)=(-4) | | 5(n-4)=(-60) | | 3=(-5k)/2 | | 24x=270 | | 2x-40+1/2x+20+2x-115=180 |

Equations solver categories